Copied to
clipboard

G = C23.10D20order 320 = 26·5

3rd non-split extension by C23 of D20 acting via D20/C10=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.10D20, C405C43C2, C406C47C2, (C2×C8).2D10, C22⋊C8.5D5, C10.7(C4○D8), (C2×C20).239D4, (C2×C4).117D20, (C2×C40).2C22, C20.44D45C2, (C22×C4).77D10, (C22×C10).50D4, C20.281(C4○D4), C2.9(D407C2), (C2×C20).740C23, C20.48D4.8C2, C22.103(C2×D20), C10.8(C8.C22), C51(C23.20D4), C4.105(D42D5), C2.11(C8.D10), C4⋊Dic5.269C22, (C22×C20).92C22, (C2×Dic10).14C22, C23.21D10.3C2, C10.16(C22.D4), C2.12(C22.D20), (C5×C22⋊C8).7C2, (C2×C10).123(C2×D4), (C2×C4).685(C22×D5), SmallGroup(320,350)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C23.10D20
C1C5C10C20C2×C20C4⋊Dic5C23.21D10 — C23.10D20
C5C10C2×C20 — C23.10D20
C1C22C22×C4C22⋊C8

Generators and relations for C23.10D20
 G = < a,b,c,d,e | a2=b2=c2=1, d20=e2=c, dad-1=ab=ba, ac=ca, eae-1=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd19 >

Subgroups: 350 in 96 conjugacy classes, 39 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, Q8, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C2×Q8, Dic5, C20, C20, C2×C10, C2×C10, C22⋊C8, Q8⋊C4, C4.Q8, C2.D8, C42⋊C2, C22⋊Q8, C40, Dic10, C2×Dic5, C2×C20, C2×C20, C22×C10, C23.20D4, C4×Dic5, C10.D4, C4⋊Dic5, C23.D5, C2×C40, C2×Dic10, C22×C20, C20.44D4, C406C4, C405C4, C5×C22⋊C8, C20.48D4, C23.21D10, C23.10D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C22.D4, C4○D8, C8.C22, D20, C22×D5, C23.20D4, C2×D20, D42D5, C22.D20, D407C2, C8.D10, C23.10D20

Smallest permutation representation of C23.10D20
On 160 points
Generators in S160
(2 80)(4 42)(6 44)(8 46)(10 48)(12 50)(14 52)(16 54)(18 56)(20 58)(22 60)(24 62)(26 64)(28 66)(30 68)(32 70)(34 72)(36 74)(38 76)(40 78)(81 121)(82 102)(83 123)(84 104)(85 125)(86 106)(87 127)(88 108)(89 129)(90 110)(91 131)(92 112)(93 133)(94 114)(95 135)(96 116)(97 137)(98 118)(99 139)(100 120)(101 141)(103 143)(105 145)(107 147)(109 149)(111 151)(113 153)(115 155)(117 157)(119 159)(122 142)(124 144)(126 146)(128 148)(130 150)(132 152)(134 154)(136 156)(138 158)(140 160)
(1 79)(2 80)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(25 63)(26 64)(27 65)(28 66)(29 67)(30 68)(31 69)(32 70)(33 71)(34 72)(35 73)(36 74)(37 75)(38 76)(39 77)(40 78)(81 141)(82 142)(83 143)(84 144)(85 145)(86 146)(87 147)(88 148)(89 149)(90 150)(91 151)(92 152)(93 153)(94 154)(95 155)(96 156)(97 157)(98 158)(99 159)(100 160)(101 121)(102 122)(103 123)(104 124)(105 125)(106 126)(107 127)(108 128)(109 129)(110 130)(111 131)(112 132)(113 133)(114 134)(115 135)(116 136)(117 137)(118 138)(119 139)(120 140)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(81 101)(82 102)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(121 141)(122 142)(123 143)(124 144)(125 145)(126 146)(127 147)(128 148)(129 149)(130 150)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 95 21 115)(2 134 22 154)(3 93 23 113)(4 132 24 152)(5 91 25 111)(6 130 26 150)(7 89 27 109)(8 128 28 148)(9 87 29 107)(10 126 30 146)(11 85 31 105)(12 124 32 144)(13 83 33 103)(14 122 34 142)(15 81 35 101)(16 160 36 140)(17 119 37 99)(18 158 38 138)(19 117 39 97)(20 156 40 136)(41 153 61 133)(42 112 62 92)(43 151 63 131)(44 110 64 90)(45 149 65 129)(46 108 66 88)(47 147 67 127)(48 106 68 86)(49 145 69 125)(50 104 70 84)(51 143 71 123)(52 102 72 82)(53 141 73 121)(54 100 74 120)(55 139 75 159)(56 98 76 118)(57 137 77 157)(58 96 78 116)(59 135 79 155)(60 94 80 114)

G:=sub<Sym(160)| (2,80)(4,42)(6,44)(8,46)(10,48)(12,50)(14,52)(16,54)(18,56)(20,58)(22,60)(24,62)(26,64)(28,66)(30,68)(32,70)(34,72)(36,74)(38,76)(40,78)(81,121)(82,102)(83,123)(84,104)(85,125)(86,106)(87,127)(88,108)(89,129)(90,110)(91,131)(92,112)(93,133)(94,114)(95,135)(96,116)(97,137)(98,118)(99,139)(100,120)(101,141)(103,143)(105,145)(107,147)(109,149)(111,151)(113,153)(115,155)(117,157)(119,159)(122,142)(124,144)(126,146)(128,148)(130,150)(132,152)(134,154)(136,156)(138,158)(140,160), (1,79)(2,80)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)(81,141)(82,142)(83,143)(84,144)(85,145)(86,146)(87,147)(88,148)(89,149)(90,150)(91,151)(92,152)(93,153)(94,154)(95,155)(96,156)(97,157)(98,158)(99,159)(100,160)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(111,131)(112,132)(113,133)(114,134)(115,135)(116,136)(117,137)(118,138)(119,139)(120,140), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,95,21,115)(2,134,22,154)(3,93,23,113)(4,132,24,152)(5,91,25,111)(6,130,26,150)(7,89,27,109)(8,128,28,148)(9,87,29,107)(10,126,30,146)(11,85,31,105)(12,124,32,144)(13,83,33,103)(14,122,34,142)(15,81,35,101)(16,160,36,140)(17,119,37,99)(18,158,38,138)(19,117,39,97)(20,156,40,136)(41,153,61,133)(42,112,62,92)(43,151,63,131)(44,110,64,90)(45,149,65,129)(46,108,66,88)(47,147,67,127)(48,106,68,86)(49,145,69,125)(50,104,70,84)(51,143,71,123)(52,102,72,82)(53,141,73,121)(54,100,74,120)(55,139,75,159)(56,98,76,118)(57,137,77,157)(58,96,78,116)(59,135,79,155)(60,94,80,114)>;

G:=Group( (2,80)(4,42)(6,44)(8,46)(10,48)(12,50)(14,52)(16,54)(18,56)(20,58)(22,60)(24,62)(26,64)(28,66)(30,68)(32,70)(34,72)(36,74)(38,76)(40,78)(81,121)(82,102)(83,123)(84,104)(85,125)(86,106)(87,127)(88,108)(89,129)(90,110)(91,131)(92,112)(93,133)(94,114)(95,135)(96,116)(97,137)(98,118)(99,139)(100,120)(101,141)(103,143)(105,145)(107,147)(109,149)(111,151)(113,153)(115,155)(117,157)(119,159)(122,142)(124,144)(126,146)(128,148)(130,150)(132,152)(134,154)(136,156)(138,158)(140,160), (1,79)(2,80)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)(81,141)(82,142)(83,143)(84,144)(85,145)(86,146)(87,147)(88,148)(89,149)(90,150)(91,151)(92,152)(93,153)(94,154)(95,155)(96,156)(97,157)(98,158)(99,159)(100,160)(101,121)(102,122)(103,123)(104,124)(105,125)(106,126)(107,127)(108,128)(109,129)(110,130)(111,131)(112,132)(113,133)(114,134)(115,135)(116,136)(117,137)(118,138)(119,139)(120,140), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,95,21,115)(2,134,22,154)(3,93,23,113)(4,132,24,152)(5,91,25,111)(6,130,26,150)(7,89,27,109)(8,128,28,148)(9,87,29,107)(10,126,30,146)(11,85,31,105)(12,124,32,144)(13,83,33,103)(14,122,34,142)(15,81,35,101)(16,160,36,140)(17,119,37,99)(18,158,38,138)(19,117,39,97)(20,156,40,136)(41,153,61,133)(42,112,62,92)(43,151,63,131)(44,110,64,90)(45,149,65,129)(46,108,66,88)(47,147,67,127)(48,106,68,86)(49,145,69,125)(50,104,70,84)(51,143,71,123)(52,102,72,82)(53,141,73,121)(54,100,74,120)(55,139,75,159)(56,98,76,118)(57,137,77,157)(58,96,78,116)(59,135,79,155)(60,94,80,114) );

G=PermutationGroup([[(2,80),(4,42),(6,44),(8,46),(10,48),(12,50),(14,52),(16,54),(18,56),(20,58),(22,60),(24,62),(26,64),(28,66),(30,68),(32,70),(34,72),(36,74),(38,76),(40,78),(81,121),(82,102),(83,123),(84,104),(85,125),(86,106),(87,127),(88,108),(89,129),(90,110),(91,131),(92,112),(93,133),(94,114),(95,135),(96,116),(97,137),(98,118),(99,139),(100,120),(101,141),(103,143),(105,145),(107,147),(109,149),(111,151),(113,153),(115,155),(117,157),(119,159),(122,142),(124,144),(126,146),(128,148),(130,150),(132,152),(134,154),(136,156),(138,158),(140,160)], [(1,79),(2,80),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(25,63),(26,64),(27,65),(28,66),(29,67),(30,68),(31,69),(32,70),(33,71),(34,72),(35,73),(36,74),(37,75),(38,76),(39,77),(40,78),(81,141),(82,142),(83,143),(84,144),(85,145),(86,146),(87,147),(88,148),(89,149),(90,150),(91,151),(92,152),(93,153),(94,154),(95,155),(96,156),(97,157),(98,158),(99,159),(100,160),(101,121),(102,122),(103,123),(104,124),(105,125),(106,126),(107,127),(108,128),(109,129),(110,130),(111,131),(112,132),(113,133),(114,134),(115,135),(116,136),(117,137),(118,138),(119,139),(120,140)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(81,101),(82,102),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(121,141),(122,142),(123,143),(124,144),(125,145),(126,146),(127,147),(128,148),(129,149),(130,150),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,95,21,115),(2,134,22,154),(3,93,23,113),(4,132,24,152),(5,91,25,111),(6,130,26,150),(7,89,27,109),(8,128,28,148),(9,87,29,107),(10,126,30,146),(11,85,31,105),(12,124,32,144),(13,83,33,103),(14,122,34,142),(15,81,35,101),(16,160,36,140),(17,119,37,99),(18,158,38,138),(19,117,39,97),(20,156,40,136),(41,153,61,133),(42,112,62,92),(43,151,63,131),(44,110,64,90),(45,149,65,129),(46,108,66,88),(47,147,67,127),(48,106,68,86),(49,145,69,125),(50,104,70,84),(51,143,71,123),(52,102,72,82),(53,141,73,121),(54,100,74,120),(55,139,75,159),(56,98,76,118),(57,137,77,157),(58,96,78,116),(59,135,79,155),(60,94,80,114)]])

59 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F4G4H4I4J5A5B8A8B8C8D10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222444444444455888810···101010101020···202020202040···40
size1111422222020202040402244442···244442···244444···4

59 irreducible representations

dim11111112222222222444
type++++++++++++++---
imageC1C2C2C2C2C2C2D4D4D5C4○D4D10D10C4○D8D20D20D407C2C8.C22D42D5C8.D10
kernelC23.10D20C20.44D4C406C4C405C4C5×C22⋊C8C20.48D4C23.21D10C2×C20C22×C10C22⋊C8C20C2×C8C22×C4C10C2×C4C23C2C10C4C2
# reps121111111244244416144

Matrix representation of C23.10D20 in GL4(𝔽41) generated by

1000
04000
0010
004040
,
1000
0100
00400
00040
,
40000
04000
0010
0001
,
24000
02900
004039
0011
,
02900
24000
00918
003232
G:=sub<GL(4,GF(41))| [1,0,0,0,0,40,0,0,0,0,1,40,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[24,0,0,0,0,29,0,0,0,0,40,1,0,0,39,1],[0,24,0,0,29,0,0,0,0,0,9,32,0,0,18,32] >;

C23.10D20 in GAP, Magma, Sage, TeX

C_2^3._{10}D_{20}
% in TeX

G:=Group("C2^3.10D20");
// GroupNames label

G:=SmallGroup(320,350);
// by ID

G=gap.SmallGroup(320,350);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,232,254,219,142,1123,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^20=e^2=c,d*a*d^-1=a*b=b*a,a*c=c*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^19>;
// generators/relations

׿
×
𝔽